Markscheme

November 2017

Chemistry

Higher level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	b	i	negative correlation OR model/prediction matches results OR 99% of variance accounted for \checkmark		1
1.	b	ii	$I=-0.001631 d+0.09939$ OR $y=-0.001631 x+0.09939 \checkmark$	Accept correctly rounded values for m and b in equation. Do not accept " $y=m x+b$ ".	1
1.	b	iii	ions move «across electrolyte» \downarrow		1

Question		Answers	Notes	Total
2.	a	$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$	Accept full or net ionic equation.	1
2.	b	Any two from: volume «of HCl » \downarrow concentration «of $\mathrm{HCl} »[\mathrm{HCl}] \checkmark$ temperature «of $\mathrm{HCl} » ~ \checkmark$ mass of antacid/tablets \checkmark size of antacid particles/tablets OR surface area of antacid «particles»/tablets \checkmark	Accept "number of tablets/different doses". Do not accept "same pH meter" OR "initial pH" OR "concentration of antacid/[antacid]". A variable must be given so do not accept answers such as "stirring", "whether tablets are whole or crushed" etc.	2 max
2.	C	$(\pm) 0.04$ OR $(\pm) 0.03 \checkmark$		1

Question			Answers	Notes	Total
2.	d		Any two of: uncertainty «(\pm)0.04/($\pm) 0.03$ » means \mathbf{A} and \mathbf{C} cannot be distinguished \checkmark each measurement was conducted once \checkmark stomach pH should not be raised a lot «so antacid B is not necessarily effective» \checkmark mass/number of tablets/dose «of antacid» used was not controlled \checkmark actual environment in stomach is different \checkmark	Accept "amount of tablets" for "dose". Do not accept "nature/composition of tablets differs". Accept an answer such as "time frame is too short since some antacids could be long-acting drugs if they contain a gelatinisation/delaying agent" but not just "time frame is too short since some antacids could be long-acting drugs".	2 max

Question		Answers	Notes	Total
3.	a	-21 «ํ. ${ }^{\circ}$,		1
3.	b		Accept any specific answer in the range 27 to 29 «\%».	1

Question		Answers	Notes	Total
3.	C	$\begin{aligned} & M_{\mathrm{r}}=94.48 \checkmark \\ & \text { «2 } \frac{(1.01 \times 2+16.00)}{94.48} \times 100=» 38.15 \text { «\%» } \end{aligned}$	Award M2 only if answer is to 2 decimal places. Award [2] for correct final answer. Award [1 max] for 38.10 \%.	2
3.	d	rust/corrosion «of cars and bridges» OR waste of important raw material OR soil/water salination/pollution «from run off» OR erosion of/damage to the road surface OR specific example of damage to the ecosystem OR «outdoor» temperatures may go below effective levels for NaCl «to lower freezing point» so NaCl could be wasted OR roads can refreeze causing hazards \checkmark	Do not accept "tyre damage". Do not accept "economic issues" OR "environmental issues" unless specified (eg accept "increase in costs for local councils road budgets" but not "cost" alone). Do not accept "makes roads more slippery".	1

Section B

Option A - Materials

Question		Answers	Notes	Total
4.	a	Alloy: mixture of metal with other metals/non-metals OR mixture of elements that retains the properties of a metal \checkmark Composite: reinforcing phase embedded in matrix phase \checkmark	Award [1 max] for implying "composites only have heterogeneous/nonhomogeneous compositions".	2
4.	b	difference in ionic/atomic radius prevents layers sliding over each other \checkmark	Accept "difference in diameter/packing of cations prevents layers sliding over each other".	1
4.	c	Any three of: sample injected into argon «plasma» \checkmark atoms «of sample» are excited/ionised OR electrons are promoted \checkmark electrons drop back/recombine with ions AND emit photons of characteristic energies/wavelengths/frequencies \checkmark total number of photons is proportional to concentration of element \checkmark actual concentration found from calibration/standard curve \checkmark	Accept "graph/plot" for "curve".	3 max

| Question | | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5 .}$ | | Any two of:
 greater selectivity \checkmark
 higher efficiency \checkmark
 longer life expectancy
 OR
 not easily poisoned \checkmark
 easier to recover \checkmark
 low«er» environmental impact \checkmark
 large range of conditions/temperatures/pressures supported \checkmark
 lower energy costs \checkmark
 increase in yield «per unit time» offsets cost of catalyst \checkmark | $\mathbf{2 ~ m a x ~}$ | |

Question			Answers	Notes	Total
6.	a		Any two of: ability to form a LC phase \checkmark chemically stable \checkmark «LC phase that is» stable over suitable temperature range \checkmark polar OR being able to change orientation with applied electric field \checkmark rapid switching speed «responds to changes of voltage quickly» \checkmark	Accept "ability of molecules to transmit light under certain conditions" OR "rodshaped molecules" OR "stable to light/not light sensitive".	2 max
6.	b		Any two of: have higher critical temperatures/ T_{c} «than Type 1» OR can act at higher temperatures \checkmark have higher critical magnetic fields/ B_{c} «than Type 1» \checkmark less time needed to cool to operating temperature \checkmark less energy required to cool down/maintain low temperature \checkmark	Do not accept "Type 2 has a gradual transition to a superconducting state but in Type 1 it is a sharp transition".	2 max
6.	c	i	$\begin{aligned} & \mathrm{Fe}(\mathrm{CO})_{5}(\mathrm{~g}) \rightarrow \mathrm{Fe}(\mathrm{~s})+5 \mathrm{CO}(\mathrm{~g}) \checkmark \\ & 2 \mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \checkmark \end{aligned}$		2
6.	c	ii	large surface area «on which carbon nanotubes form» \checkmark		1

Question		Answers	Notes	Total
7.	a	branching in LDPE prevents close packing «of chains» \checkmark LDPE is more flexible/less rigid OR LDPE has lower «tensile» strength \checkmark	Do not accept "difference in density". Award [1 max] for stating "branching in LDPE AND little/no branching in HDPE".	2
7.	b	addition: $\mathrm{C}=\mathrm{C}$ AND condensation: two functional groups needed on each monomer \checkmark	Accept "alkene/alkenyl" OR "double bond" OR "multiple bond".	1
7.	c	hydrogen bonds \checkmark	Accept " $\pi-\pi$ stacking/interactions".	1
7.	d	B AND absence of «absorption of» C-H at 2850-3090 «cm ${ }^{-1}$ » OR B AND presence of «absorption of» C-F at 1000-1400 «cm²»» \checkmark		1
7.	e	$\left(-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}-\right)_{2}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{HCl}(\mathrm{~g})$ correct species in reactants and products \checkmark balanced \checkmark	$\begin{aligned} & \text { Accept " }\left(-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CI}-\right)_{2}(\mathrm{~s})+5.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \\ & \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \text { ". } \end{aligned}$ Award M2 only if M1 correct.	2

Question			Answers	Notes	Total
8.	a		$« 8 \times \frac{1}{8}+6 \times \frac{1}{2}=» 4 \checkmark$		1
8.	b	i	$\begin{aligned} & \text { face diagonal }=\sqrt{2} a=4 r \\ & « a=\frac{\left(4 \times 1.18 \times 10^{-8} \mathrm{~cm}\right)}{\sqrt{2}}=» 3.34 \times 10^{-8} \text { «cm» } \end{aligned}$		1
8.	b	ii	$\begin{aligned} & \text { mass of } 4 \text { atoms }=\frac{4 \times 58.93 \mathrm{gmol}^{-1}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=3.916 \times 10^{-22} \text { «g» } \\ & \text { «density }=\frac{3.916 \times 10^{-22} \mathrm{~g}}{\left(3.34 \times 10^{-8} \mathrm{~cm}\right)^{3}}=» 10.5 « \mathrm{~g} \mathrm{~cm}^{-3} » \checkmark \end{aligned}$ Answer using $3.00 \times 10^{-8} \mathrm{~cm}$: mass of 4 atoms $=\frac{4 \times 58.93 \mathrm{gmol}^{-1}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=3.916 \times 10^{-22}$ «g» \checkmark $\text { «density }=\frac{3.916 \times 10^{-22} \mathrm{~g}}{\left(3.00 \times 10^{-8} \mathrm{~cm}\right)^{3}}=» 14.5 « \mathrm{~g} \mathrm{~cm}^{-3} » \checkmark$	Award [2] for correct final answer.	2

Question		Answers	Notes	Total
9.	a	adsorption OR chelation OR ion exchange \checkmark	Accept other valid methods such as "phytoremediation" OR "Fenton reaction" OR "electrolysis".	1
9.	b	Calculation: $\begin{aligned} & K_{\text {sp }}=\left[\mathrm{Cd}^{2+}\right] \times\left[\mathrm{S}^{2-}\right] \checkmark \\ & {\left[\mathrm{Cd}^{2+}\right]=8.0 \times 10^{-26} « \mathrm{~mol} \mathrm{dm}^{-3} » \checkmark} \end{aligned}$ Assumption: volume of solution remains $1.0 \mathrm{dm}^{3}$ OR concentration of sulfide ions in original solution is negligible OR hydrolysis of sulfide ions is negligible \checkmark	Award [2] for correct numerical answer of $\left[\mathrm{Cd}^{2+}\right]$ for M1 and M2. Accept " $0.10+x \sim 0.10<m o l \mathrm{dm}^{-3}$ ".	3

Option B - Biochemistry

Question			Answers	Notes	Total
10.	a	i	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O} \checkmark$		1
10.	a	ii	ratio of oxygen to carbon in linoleic acid lower OR linoleic acid less oxidized OR linoleic acid more reduced \checkmark	Accept «average» oxidation state of carbon in linoleic acid is lower".	1
10.	b		$\begin{aligned} & \text { « } \frac{1.24 \mathrm{~g}}{280.50 \mathrm{gmol}^{-1}}=» 0.00442 \text { «mol» } \checkmark \\ & 0.00884 \mathrm{~mol} \text { of } \mathrm{C}=\mathrm{C} \\ & \text { OR } \\ & \text { ratio of linoleic acid : iodine }=1: 2 \checkmark \\ & \text { «volume of } \mathrm{I}_{2} \text { solution }=\frac{0.00884 \mathrm{~mol}}{0.300 \mathrm{moldm}^{-3}}=» 0.0295 \text { «dm }^{3} » / 29.5 \text { «cm }{ }^{3} » \checkmark \end{aligned}$	Award [3] for correct final answer.	3

Question		Answers	Notes	Total
10.	c	Any two of: increases «ratio of» HDL «to LDL» cholesterol OR decreases LDL cholesterol «level» \checkmark removes plaque from/unblocks arteries OR decreases risk of heart disease \checkmark decreases risk of stroke «in the brain» \downarrow	Accept "essential fatty acid". Do not accept "bad cholesterol" for "LDL cholesterol" OR "good cholesterol" for "HDL cholesterol". Do not accept general answers such as "source of energy" OR "forms triglycerides" OR "regulates permeability of cell membranes" etc.	2 max

Question			Answers	Notes	Total
11.	b	i	similar shape/size/structure «as succinate ion/substrate» \checkmark competes for the active site «with the succinate ion/substrate» \checkmark	Accept "competitive inhibitor" for M2. Award [1 max] if non-competitive inhibition is correctly described.	2
11.	b	ii	 same $V_{\text {max }}$ reached at higher [substrate] \checkmark		1

| Question | | Answers | Notes
 conformation/shape altered
 OR
 active site altered
 OR
 tertiary structure altered \checkmark | Accept "substrate doesn't fit/fits poorly
 into active site" OR "enzyme denatures"
 for M1 but not "affects potential of
 enzyme to form complex with
 substrate". |
| :--- | :--- | :--- | :--- | :--- | :--- |
| acidic/basic/ionizable/COOH/carboxyl/NH2/amino groups in the R groups/side
 chains «react» \checkmark
 exchange/lose/gain protons/ $\mathrm{H}^{+} \checkmark$
 ionic/H-bonds altered \checkmark | $\mathbf{4}$ | | | |

Question			Answers	Notes	Total
12.	a		«reaction in which» two reactants/molecules/functional groups bond/react «to form a larger molecule/single main product» \checkmark small/tiny molecule OR $\mathrm{H}_{2} \mathrm{O}$ formed \checkmark	Accept formula or name of a specified small molecule other than water such as ammonia, ethanoic/acetic acid, ethanol, hydrogen sulfide etc. for M2. Do not accept just "molecule formed". Award [1 max] for an example giving an equation of a condensation reaction such as the formation of a dissacharide.	2
12.	b			Accept "alpha" or "beta" form of galactose.	1

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12. | c | | Any two of:
 makes the plastic more hydrophilic/water soluble \checkmark
 carbohydrates are broken down/hydrolysed by bacteria/microorganisms \checkmark
 makes plastic more accessible to bacteria as holes/channels are created
 OR
 plastic of lower density is more permeable/susceptible to
 water/oxygen/heat/pressure \checkmark |
| weakens intermolecular/London/dispersion/instantaneous induced dipole-
 induced dipole forces «between polymer chains in the plastic» \checkmark | 2 max
 Accept "van der Waals/vdW" for "London" | | |

| 13. | Water:
 hydrogen/H-bonds
 OR
 ion-dipole interactions \checkmark
 Proteins:
 ionic bonds/interactions
 OR
 hydrogen/H-bonds
 OR
 ion-dipole interactions \checkmark | Ignore "London/dispersion/vdW/dipole-
 dipole interactions" stated for water
 and/or proteins. |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 14. | a | $\mathrm{O}_{2}+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$
 14.2 to +3
 OR
 +1
 OR
 increases «by 1» \checkmark | Accept any balanced equation with any
 integer or fractional coefficients. |
| 1 | | | |

Question			Answers	Notes	Total
15.	a		«mainly» hydrocarbon/non-polar «structure» \checkmark forms London/dispersion/instantaneous induced dipole-induced dipole forces «with fats» \downarrow	Accept "forms van der Waals'/vdW forces". Award [1 max] for "contains only one OH/hydroxyl AND cannot form «enough» H-bonds".	2
15.	b		Any three of: cis-retinal binds to «the protein» opsin OR cis-retinal «binds to opsin and» forms rhodopsin \checkmark rhodopsin extends conjugation in retinal OR rhodopsin allows absorption of visible/blue/green light \checkmark when visible light is absorbed cis-retinal changes to trans-retinal \checkmark change «to trans-retinal» triggers an electrical/nerve signal \checkmark trans-retinal detaches from opsin $\boldsymbol{A N D}$ is converted back to cis-retinal OR trans-retinal is converted back to cis-retinal through enzyme activity \checkmark	Do not accept "cis-retinal to transretinal" alone without reference to absorption of visible light.	3 max

Option C - Energy

Question		Answers	Notes	Total
16.	a	$\begin{aligned} & M_{\mathrm{r}}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=114.26 \text { AND } \Delta H_{\mathrm{c}}^{\ominus}=-5470 \text { «kJ mol}{ }^{-1} » \checkmark \\ & \text { «specific energy }=\frac{5470 \mathrm{~kJ}}{0.11426 \mathrm{~kg}}=» 4.79 \times 10^{4} / 47873 / 47900 \text { «kJ kg}{ }^{-1} » \checkmark \end{aligned}$	Award [2] for correct final answer. Accept " 48×10^{3} «kJ kg ${ }^{-1}$ »" OR " 47.9×10^{3} «kJ kg ${ }^{-1}$ »".	2
16.	b	wood is less useful because it requires «about three times» more mass for same energy \checkmark	Accept "octane is more useful because it has higher specific energy".	1
16.	C	Any one of: wind \checkmark tidal/wave \checkmark hydro-electric \checkmark solar \checkmark thermal/geothermal \checkmark plant oil \checkmark	Accept "biofuel/biodiesel/«bio»ethanol", but not just "water" or "fuel cells".	1 max

Question		Answers	Notes	Total
17.	a	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ OR isomerisation/reforming/platforming/cracking \checkmark Pt/Re/Rh/Pd/Ir OR catalyst \checkmark	A structural formula is only required for the organic product, not heptane. Accept any correctly balanced equation showing increased branching OR cyclization OR aromatization OR cracking. Suitable supports for catalysts may be included for M3 (eg silica, alumina, zeolite) but the symbol or name of an appropriate metal must be given (typically a noble metal). Ignore temperature and other conditions. Award M2 AND M3 for "catalytic isomerisation" OR "catalytic reforming" OR "catalytic cracking".	3

Question			Answers	Notes	Total
17.	b		which specific carbon-based greenhouse gases are included OR whether non-carbon based greenhouse gases should be included OR whether CO/incomplete combustion should be included «as can be oxidized to CO_{2} " OR how to "sum" all steps in a process creating CO_{2} OR difficult to determine both direct and indirect production of GHG/greenhouse gas emissions \checkmark	Ignore reference to geopolitical issues (eg false recording of data by governments etc.). Accept "difficult to measure all sources of CO_{2} " but not "difficult to measure CO_{2} released in atmosphere".	1
17.	c		Any three of: incoming solar radiation is short wavelength/high frequency/high energy/UV \checkmark radiated/emitted as long wavelength/low frequency/low energy/IR «radiation» \checkmark energy/IR «radiation» absorbed by «bonds in» greenhouse gases \checkmark energy radiated/emitted as IR «radiation» some of which returns back to Earth \checkmark	Do not accept "reflected" OR "bounced" OR "trapped".	3 max

Question			Answers	Notes	Total
18.	a	i	Fission: heavy nuclei AND Fusion: light nuclei \checkmark both increase in binding energy/energy yield «per nucleon» \checkmark	Accept "large nuclei" OR "greater atomic masses of nuclei" for fission AND "small nuclei" OR "smaller atomic masses of nuclei" for fusion. Award [1 max] for "Fission: heavy nuclei AND increase in binding energy «per nucleon»" OR "Fusion: light nuclei AND increase in binding energy" «per nucleon»".	2
18.	a	ii	Any two of: no/less radioactive waste produced \checkmark abundance/low cost of fuel $\sqrt{ }$ larger amounts of energy released per unit mass \checkmark does not require a critical mass \checkmark can be used continuously $\sqrt{ }$ fusion reactor less likely to cause large-scale technological disaster \checkmark	Do not accept "no/less waste produced". Accept "higher specific energy".	2 max
18.	b		6 «hours» \checkmark		1

Question			Answers	Notes	Total
18.	C	i	Loss in mass: $\begin{aligned} & «\left(3.78532 \times 10^{-25} \mathrm{~kg}-9.109383 \times 10^{-31} \mathrm{~kg}-3.78528 \times 10^{-25} \mathrm{~kg}\right) \times 0.00100 \times \\ & 6.02 \times 10^{23}=» 1.86 \times 10^{-9} \text { «kg» } \end{aligned}$ Energy released: $« E=m c^{2}=1.86 \times 10^{-9} \mathrm{~kg} \times\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=» 1.67 \times 10^{8} \text { «J» }$		2
18.	c	ii	«1.67 $\times 10^{8} \mathrm{~J} \times \frac{7}{8}=» 1.46 \times 10^{8}$ «J»		1
18.	d		production of radicals $/ \cdot \mathrm{O}_{2}-/ \cdot \mathrm{OH}$ OR direct effect such as breaking bonds/atom migration \checkmark	Ignore missing dots on radical species. Accept named radical eg "superoxide radical" OR "hydroxyl radical". An example must be given for second alternative.	1

Question		Answers	Notes	Total
19.	a		Catalyst not required for equation. Award M2 only if M1 is correct.	2
19.	b	Any three of: dye has conjugated system \checkmark dye absorbs a photon «and injects an electron into TiO_{2} » \checkmark electrons transferred to semiconductor «and dye ionized» \checkmark dye oxidizes/takes electron from electrolyte \checkmark electron flows through external circuit «to reduce electrolyte» \checkmark	M4 may also be scored from more detailed answers involving iodide species (eg "iodide/I- oxidized to $I_{3}-/$ triiodide" OR "I-/iodide reduces dye" OR "I-/iodide releases electron to dye" OR " $I_{3}-$ /triiodide reduced to I-/iodide").	3 max

Question		Answers	Notes	Total
20.	a	Negative electrode (anode): $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \checkmark$ Positive electrode (cathode): $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$ Overall equation: $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$	Accept any whole or fractional coefficients in balanced equations. Award [1 max] for correct halfequations at wrong electrodes for M1 and M 2 .	3
20.	b	Advantage: Any one of: liquid methanol is easier to transport/store than gaseous hydrogen OR hydrogen is explosive \checkmark longer membrane life «as it operates in aqueous environment» \checkmark methanol has greater energy density than hydrogen \checkmark Disadvantage: Any one of: lower voltage \checkmark lower power per unit mass «of the cell» \checkmark lower efficiency \checkmark toxic/can be mistaken for ethanol \checkmark lower specific energy \checkmark	Ignore any cost references throughout. Accept "CO2/greenhouse gas produced" OR "requires a more highly efficient catalyst". Do not award marks for converse statements for the advantage and disadvantage.	2

Option D — Medicinal chemistry

Question		Answers	Notes	Total
21.	a	$\begin{aligned} & { }_{71}^{177} \mathrm{Lu} \rightarrow{ }_{72}^{177} \mathrm{Hf}+{ }_{-1}^{0} \mathrm{e} «+\mathrm{v} » \\ & \mathrm{Hf} \checkmark \\ & \text { correct } A \text { and } Z \text { AND beta product } \checkmark \end{aligned}$	$\begin{array}{\|l} \text { Accept " } \beta / \beta-/ e / e^{-"} \text { for " }{ }_{-1}^{0} e^{\prime} \text { ". } \\ \text { Accept "177 } \mathrm{Lu} \rightarrow{ }^{177} \mathrm{Hf}+\mathrm{e}^{-} \text {«+ v"". } \end{array}$	2
21.	b	$\text { number of half-lives }=\frac{t}{t_{\frac{1}{2}}}=2.08$ OR $\frac{N(t)}{N_{0}}=0.5^{\frac{14.0}{6.73}}$ OR $\lambda=« \frac{\ln 2}{t_{\frac{1}{2}}}=\frac{\ln 2}{6.73}=» 0.103 \text { «day }^{-1} »$ OR $\frac{N(t)}{N_{0}}=e^{-0.103 \times 14.0} \checkmark$ 23.6 «\%»	Award [2] for correct final answer.	2

Question			Answers	Notes	Total
21.	C		Any two of: emits weak ionising radiation OR low activity/radioactivity \checkmark can be stored until material becomes inactive AND then disposed with normal waste \checkmark «isotopes» have short lives OR exist for a short period of time \checkmark	Award [1 max] for "low-level waste/ LLW".	2 max

Question			Answers	Notes	Total
22.	a	i	$\mathrm{C}=\mathrm{O} \checkmark$	Accept "carbonyl".	1
22.	a	ii	X (must be identified) AND Any two of: For \mathbf{X} : N-H «absorption» AND at $3300-3500$ «cm-1» \checkmark O-H «absorption» in phenol AND at $3200-3600$ «cm-1»» absence of OH «absorption» in carboxylic acid AND $2500-3000$ «cm ${ }^{-1}$ » \checkmark	Accept any specific wavenumber in the range 3300-3380 «cm ${ }^{-1} »$ for M1. Accept any specific wavenumber in the range 3100-3200 «cm ${ }^{-1}$ ». Award [1 max] if \boldsymbol{Y} is incorrectly identified for paracetamol but if a correct reason/reasons is/are given for the bond absorption(s).	2 max
22.	b		prevents/interferes with the production of prostaglandins OR prevents/interferes with the production of substances responsible for inflammation/pain/fever \checkmark at the site of injury/source of pain \checkmark		2

Question			Answers	Notes	Total
22.	C	i	react with $\mathrm{CH}_{3} \mathrm{I} /$ methyl iodide «in alkaline solution» \checkmark	Accept "react with $\mathrm{CH}_{3} \mathrm{Cl} /$ methyl chloride" OR "react with methyl halide". Accept name or formula of a suitable specific methylating reagent (eg trimethylphenylammonium chloride etc.). Accept "hydroxy/alcohol" but not "hydroxide" for "hydroxyl".	1
22.	C	ii	Any two of: interact with opioid receptors in the brain \checkmark alter the structure of brain cells OR alter the way the brain works «so that it only works normally when the opiates are present» OR prevents transmission of pain impulses inside the brain \checkmark release dopamine «that the person craves» OR give a feeling of pleasure/euphoria «that the person craves» \checkmark withdrawal symptoms «prevent patient from terminating drug use» \checkmark	Accept specific withdrawal symptoms.	2 max

Question		Answers	Notes	Total
23.	a	in animal studies $\frac{\text { LD50 }}{\text { ED50 }} \boldsymbol{A N D}$ in humans $\frac{\text { TD50 }}{\text { ED50 }}$ OR in animal studies lethal dose/LD50 AND in humans toxic dose/TD50 \checkmark		1
23.	b	Any three of: chiral auxiliary is optically active \checkmark is attached to non-optically active/non-chiral substrate \checkmark creates stereochemical condition necessary to follow a certain pathway \checkmark allows only the required enantiomer to form «so avoids need to separate a racemic mixture» \checkmark		3 max
23.	c	intravenous/lV «injection» OR injection into the bloodstream \checkmark		1

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 24. | Any two of:
 amido \checkmark
 ether \checkmark
 carbonyl \checkmark | Accept "amide/carboxamide". | |
| Accept "alkenyl/alkene". | | | |
| Accept "amino/amine". | | | |
| 2 max | | | |

25.	a	blocks/binds to $\mathrm{H} 2 /$ histamine receptors «in cells of stomach lining» OR prevents histamine molecules binding to $\mathrm{H} 2 /$ histamine receptors «and triggering acid secretion» \downarrow prevents parietal cells from releasing/producing acid \checkmark	Accept "H2-receptor antagonist/H2RA" OR "blocks/inhibits action of histamine" for M1.	2
25.	b	ALTERNATIVE 1 $\begin{aligned} & \mathrm{pH}=« \mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=» 6.35+\log \left(\frac{0.400}{0.0200}\right) \checkmark \\ & « \mathrm{pH}=» 7.65 \checkmark \end{aligned}$ ALTERNATIVE 2 $\begin{aligned} & K_{a}=4.5 \times 10^{-7} \checkmark \\ & « K_{a}=0.400 \times \frac{\left[\mathrm{H}^{+}\right]}{0.0200},\left[\mathrm{H}^{+}\right]=» 2.3 \times 10^{-8} « \mathrm{~mol} \mathrm{dm}^{-3} » \\ & « \mathrm{pH}=» 7.64 \checkmark \end{aligned}$	Award [2] for correct final answer. Do not accept " $\mathrm{pH}=8$ ".	2

Question		Answers	Notes	Total
26.		ring is «sterically» strained OR angles of 90° instead of $109.5 / 109 / 120^{\circ}$ angles OR angles smaller than 109.5/109/120\%/tetrahedral/trigonal planar/triangular planar angle \checkmark ring breaks up/opens/reacts «easily» OR amido/amide group «in ring» is «highly» reactive \checkmark binds to/reacts with/interferes with/inactivates transpeptidase OR binds to/reacts with/interferes with/inactivates enzyme responsible for bacterial cell wall formation/cross-linking \checkmark		3

27.

ethanol is oxidized «to ethanoic acid»

OR

electrons are released \checkmark
current/potential proportional to concentration «of ethanol»
OR
current compared to a reference «to determine concentration» \checkmark

Accept "ethanol reacts with oxygen" for M1.

Accept "voltage" for "potential".

